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Abstract

Photocatalysis technology could utilize solar energy to degrade many toxic pollutants and provides possibility to
deal with unsymmetrical dimethylhydrazine (UDMH) wastewater with less energy consumption. In this study,
well-aligned TiO, nanorod arrays (TiO, NRAs) were grown directly on transparent conductive glass (FTO) via a
hydrothermal method, and TiO, NRAs/CdS heterostructure films were prepared by decorating TiO, NRAs with CdS
nanoparticles through successive ion layer adsorption and reaction (SILAR). Under visible light, the TiO, NRAs/CdS
heterostructure displays enhanced photodegrading capacity compared with the bare TiO, NRAs, and the highest
photodegradation rate, 27.5% higher than that of the bare TiO, NRAs, was achieved by the sample with 15 SILAR
cycles. Additionally, the solution pH had some influence on the degradation process, which shows that the best
degradation rate can be achieved in the neutral solution (pH is ca. 7.2), and the photodegradation process can be
better in alkaline solution than in the acid solution. Moreover, the visible photocatalytic stability of the TiO, NRAs/

photoelectrochemical and photoluminescence results.

CdS sample was investigated. Finally, the underlying photocatalytic mechanism was discussed according to the
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Background

Unsymmetrical dimethylhydrazine (UDMH) is primarily
used as a high-energy propellant [1]. However, as an
eco-toxicant, UDMH greatly endangers human health
once occurred in water under natural condition. Trad-
itional water treatment methods, such as chlorination,
ozone oxidation, and catalytic oxidation with oxygen
and hydrogen peroxide in the presence of Cu, Fe, and
Co salts supported on zeolites as catalysts, achieve satis-
factory degrading results, but the high energy consump-
tion (continuous need for an oxidizing agent such as
hydrogen peroxide and ozone) and complexity of the
recycle of the catalyst make these methods inefficient for
applications. Recently, cavitational decontamination of
UDMH wastewater seems attractive. Even though it is
an oxidant-free method, much energy is still needed to
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form gas bubbles in the liquid and then explosively
develop, grow large, and, at last, collapse [1]. Therefore,
it is urgent to develop an energy-efficient method to
remove UDMH from water. It is reported that photoca-
talyst titanium oxide (TiO,) is non-selective during deg-
radation of organic compounds [2]. A lot of researches
have been made to degrade various organic contami-
nants and got excellent degrading results [3-9]. In this
respect, using TiO, as a photocatalyst to degrade
UDMH may be an energy-saving manner.

Furthermore, TiO, is abundant, low cost, nontoxic,
and highly resistant to photocorrosion [10]. Once in-
spired, the generated electron and hole pairs (e /h")
migrate to the surface of TiO, for a direct oxidation of
the polluting species or undergo redox reactions [11] at
the surface of the semiconductor to form extremely
reactive oxygen species ((OH, Oy, HyO,, O3, etc.) and
then degrade the pollutions [12]. In particular, regular
one-dimensional TiO,, with efficient and tunable optical
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absorption as well as low reflectivity [13], exhibits good
performance due to the unique nanostructure, which
facilitates the effective separation of the photoexcited
carriers.

However, the band gap (3.0~3.2 eV) of TiO, is too
wide to efficiently absorb visible light, which is the main
component of the solar spectrum (ca. 43%) [14]. One of
the promising strategies to overcome this drawback is to
couple TiO, with other narrow band gap semiconduc-
tors capable of harvesting the photons in the visible light
region [15]. CdS with a band gap of ca. 2.2-2.4 eV [16]
has been one of the most intensively studied narrow
band gap semiconductors to improve the visible light
absorption of TiO,. Moreover, the good match of band
positions between TiO, and CdS ensures efficient separ-
ation of charge carriers [17, 18].

So far, few researches are reported in dealing with
UDMH wastewater by semiconductor photocatalysis.
Most of the reported researches are conducted under
UV irradiation and use powder catalysts. Here, we
prepared visible light-induced TiO, nanorod arrays
(TiO, NRAs) decorated with CdS thin films and applied
the obtained photocatalyst for the degradation of
UDMH under visible light irradiation. To the best of our
knowledge, research on one-dimensional TiO, NRAs
decorated with CdS to degrade UDMH under visible
light irradiation has not been reported. Compared with
the bare TiO, NRAs, TiO, NRAs/CdS exhibited dramat-
ically enhanced photocatalytic capacity. By adjusting the
amount of CdS deposited on the TiO, NRAs, the
degrading rate can be improved significantly. The effect
of pH of wastewater on the degrading rate was investi-
gated. Finally, photoelectrochemical performance and
photoluminescence (PL) spectra were measured to clar-
ify the photocatalytic mechanism.

Methods

Synthesis of TiO, Nanorod Arrays Decorated with CdS
Vertically aligned TiO, NRAs were prepared on trans-
parent fluorine-doped tin oxide (FTO) glass substrates
(14 Q/sq) using the hydrothermal method based on our
published procedure [19]. Deionized water (DI, 10 mL)
was mixed with hydrochloric acid (10 mL, 36.8 wt%)
and stirred for 5 min before tetrabutyl titanate (0.4 mL,
98%) was added. When the solution was stirred to clear
clarification, the mixture solution was transferred to a
Teflon-lined stainless steel autoclave. Clean FTO sub-
strates (area 4.5 cm?) were immersed with the conduct-
ing side face down. The autoclave was put in an oven at
a temperature of 150 °C and taken out from the oven
after 5 h. After the autoclave was cooled to room
temperature, the FTO substrate was rinsed with DI
water and dried naturally at room temperature.

Page 2 of 10

CdS nanoparticles were deposited on TiO, nanorod
arrays through a successive ion layer adsorption and
reaction (SILAR) method according to the experimental
procedure reported by Xie et al. [20] with a slight modi-
fication. Briefly, the TiO, NRAs substrate was dipped in
a 0.01 M Cd(NOs), aqueous solution for 30 s, rinsing it
with DI water for 30 s, and then immersed into a
0.01 M Na,S aqueous solution for another 30 s, and
rinsing it again with DI water for 30 s. The SILAR
process was repeated to obtain TiO, NRAs sensitized
with different amounts of CdS nanoparticles, which were
designated as TiO, NRAs/CdS (n cycles).

Characterization
The surface morphology was obtained with a scanning
electron microscopy (SEM, VEDAIIXMUINCN) equipped
with an energy-dispersive X-ray spectroscopy (EDS)
system. Waster 5510 transmission electron microscopy
(TEM) was used to further characterize the film micro-
structure. X-ray diffraction (XRD, PANalytical) with
Cu-Ka (1=0.15401 nm) was operated at 40 kV and
40 mA in a 26 range of 20°-80° at a scanning speed of
5° min"'. Raman spectra were recorded using an inVia
Reflex Raman spectrometer under Ar® (532 nm) laser
excitation at room temperature. The optical properties
were probed by a UV-vis spectrophotometer (UV1800,
Shimadzu) with FTO substrate as a blank. X-ray photo-
electron spectroscopy (XPS) was obtained using ESCA-
LAB 250Xi (The binding energy of the XPS spectra was
calibrated with reference to the C 1s peak at 284.8 eV.)
Photoelectrochemical measurements were performed
in a 250-mL quartz cell using a three-electrode configur-
ation, including the prepared sample as a working elec-
trode, a Pt foil as a counter electrode, a saturated Ag/
AgCl as a reference electrode, and 0.1 M Na,S as an
electrolyte. The working electrode was illuminated within
an area of about 1.5 cm? at zero bias voltage versus the
Ag/AgCl electrode under solar-simulated (AM 15 G
filtered, 100 mW cm ™2, CEL-HXF300) light sources with a
UV cutoff filter (providing visible light with A >420 nm).
The photoluminescence (PL) spectra for solid samples
were recorded on a Fluoromax-4 spectrophotometer with
an excitation wavelength at 350 nm.

Photocatalytic Degradation of UDMH

The photodegradation of UDMH aqueous solution was
carried out in an open reactor under visible light irradi-
ation. The TiO, NRAs/CdS films (area about 6 cm?) were
immersed in UDMH aqueous solution (15 mL) with an
initial concentration of 20 mg L™'. Then, dark (adsorp-
tion) experiments were carried out for 30 min to reach
the adsorption equilibrium of UDMH with the TiO,
NRAs/CdS film. The film-coated side of the substrate was
exposed to the light source, and the light source was a
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300-W xenon lamp with visible light illumination of
60 mW cm % an ultraviolet cutoff filter was used to
exclude UV light with a wavelength below 420 nm. Traces
of UDMH can react with amino ferrocyanide sodium to
form a red complex in a weakly acidic aqueous solution,
and the color depth of the red complex is proportional to
the content of UDMH. So, the concentration of UDMH
left in the aqueous system can be measured by a spectro-
photometer at 500 nm which is the characteristic absorp-
tion wavelength of the red complex. The procedure is as
follows: (1) UDMH aqueous solution (0.5 mL) was added
to a test tube with a volume of 50 mL and then diluted to
25 mL by DI water. (2) Buffer solution (1 mL) was added
to adjust the above solution to a weakly acidic aqueous
solution. The buffer solution was made of citric acid
and disodium hydrogen phosphate with a pH of about
4.8. (3) Amino ferrocyanide sodium (1 mL, 1.5 g L") was
added to the test tube, and then, the test tube was placed
in 30 °C water bath for 1 h. (4) The final red complex
solution was measured by a spectrophotometer at
500 nm. The relative concentration of UDMH in the solu-
tion was derived by comparing its absorption intensity
with the standard curve line.
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Results and Discussion
The XRD patterns of TiO, NRAs/CdS are shown in
Fig. 1a. The characteristic peaks at 26 = 36.078°, 62.750°,
69.010°, and 69.795° can be indexed to rutile TiO, (PDF
No. 21-1276). Other peaks are attributed to the FTO
substrate. There is no characteristic peak for CdS after
SILAR, and the absence of diffraction peak associated
with CdS might be due to the low concentration and the
well dispersion of CdS in the nanocomposite. To further
confirm the presence of CdS, we measured the bare
TiO, NRAs and the TiO, NRAs/CdS (20 cycles) samples
with the glancing angle X-ray diffraction (GXRD)
method. The GXRD measurement was performed with a
scanning step of 0.02° and a dwell time of 0.15 s in the
scanning range of 22°-32°. The corresponding GXRD
pattern is shown in the inset of Fig. 1la. It can be seen
that only the TiO, NRAs/CdS (20 cycles) sample
displays one peak at about 26.5°, which is corresponding
to CdS (111) (PDF No. 10-0454) and confirms the
successful deposition of CdS on TiO, NRAs.

Raman microscopy was conducted to further identify
the presence and crystallinity of CdS, and the results are
displayed in Fig. 1b. The peak at 117 cm™ is due to
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Fig. 1 a XRD patterns and b Raman spectra of TiO, NRAs/CdS
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plasma emission of the Ar* laser [21]. The three strong
Raman peaks located around 241.4, 445.6, and 609.5 cm™*
should be assigned to the Raman active modes of rutile
TiO, [22], which is consistent with the XRD patterns. The
well-resolved band located at ~302 cm ™ is from CdS [23],
which is in accordance with the first-order scattering of
the longitudinal optical phonon mode [24].

To further reveal the valence states and surface chem-
ical compositions of the composite, XPS is employed to
characterize the TiO, NRAs/CdS (15 cycles) sample.
Figure 2a confirms Ti, O, Cd, S, and C are present in the
nanocomposite. In Fig. 2b, two peaks for the Ti 2p are
observed (464.29 eV for Ti 2p;,, and 458.59 eV for Ti
2p3/2). These values are in good agreement with the XPS
data known for Ti** in TiO, [25]. The high-resolution
spectrum of O 1s in Fig. 2c shows two components by
Gaussian curve fittings. The pronounced peak at
529.76 €V is attributed to the lattice oxygen of TiO,, and
the other peak at 531.33 eV is attributed to oxygen
defect (i.e., Ti—-OH) [26]. It is reported that oxygen
defect may play an important role in enhancing the
photocatalytic activity [27]. Two bands at 405.17 and
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411.92 eV are observed in Fig. 2d, which can be ascribed
to the Cd 3ds/, and Cd 3d3/, binding energies, respect-
ively. The result is accordance with the previous report
of Cd** values [28]. Moreover, XPS peaks of S 2p located
at 161.45 and 162.57 eV should be assigned to the spec-
tra of S 2py,» and S 2pj3y, respectively, indicating that
the composite electrode contains S%* of CdS [29]. As to
the high-resolution spectrum of O 1s shown in Fig. 2f,
the peak at 284.80 eV is from adventitious carbon (C-C/
C-H bonds), which is inevitable in XPS measurement
[30], while the peaks at 286.23 and 288.42 eV may be
due to the formation of carbonate species [31, 32]. From
the above analysis, one can clearly see that CdS is
successfully deposited on the TiO, NRAs.

The top-view SEM image of the bare TiO, NRAs is
shown in Fig. 3a. It can be seen that the nanorods are
uniform with a rectangular cross section and the nano-
rod diameter is around 60~120 nm. The corresponding
cross section image (in Fig. 3b) shows that vertically or
slantingly aligned nanorod arrays are uniformly grown in
high density on the FTO substrate and the typical nano-
rod length was about 2.2 um. From Fig. 3b—f, it can be
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seen that the amount of CdS accumulated gradually with
increase in SILAR cycles. Especially when TiO, NRAs
were decorated with CdS by 20 cycles (in Fig. 3f), the
entire surface of the TiO, NRAs was almost covered by
a film consisting of larger CdS crystallites. EDS analysis
was also carried out for areas marked by the red rectan-
gles in Fig. 3. The results are shown in Additional file 1:
Figure S1. It is observed that the Ti/Cd ratio was from
~23.94 to ~3.31 when the SILAR cycles increased from 5
to 20 cycles, which indicates that more CdS NPs were
deposited on TiO, NRAs with a higher number of
SILAR cycles.

The morphology of TiO, NRAs/CdS was further
investigated by TEM. From Fig. 4a, c, e, it can be seen
that the diameter of the nanorod in all of the samples is
consistent with the result in SEM images. The corre-
sponding high-resolution TEM images all show the
lattice fringes of rutile TiO,. From the TEM images of
the TiO, NRAs/CdS (5 cycles) in Fig. 4c, d, no obviously
recognizable CdS NPs on the surface of the nanorods
can be found due to the low content of CdS after only
5 cycles’ deposition. However, Additional file 1: Figure S1 (a)
displays the existence of CdS in the TiO, NRAs/CdS (5 cy-
cles) sample. When the SILAR deposition increased to

15 cycles shown in Fig. 4e, f, it can be seen that the smooth
surface of the bare TiO, NRAs become rough after the de-
position of CdS. A thin layer made of CdS particles covered
the whole nanorod as shown in Additional file 2: Figure S2.
The high-resolution TEM image in Fig. 4f gives a lattice
fringe of about 0.332 nm, corresponding to the 4 (111)
space of CdS.

The optical absorption property of TiO, NRAs deco-
rated with CdS NPs is shown in Fig. 5. The inset photo-
graph is the image of the TiO, NRAs/CdS NPs, showing
clearly the color change with different SILAR cycles.
With the deposition of CdS NPs, light absorption of
TiO, NRAs was strengthened from 400 to 500 nm. The
more CdS are deposited, the stronger the visible light
absorption capacity is. It is reported that any red shift in
optical response of TiO, toward the longer wavelength
region gives the possibility of higher photocatalytic activ-
ity [33]. Tiny absorption of the as-prepared TiO, sample
in the visible light range was found. This abnormal
phenomenon can be attributed to the scattering of light
caused by the nanorod arrays as well as the absorption
by the FTO itself [29, 34].

Photodegradation of UDMH was carried out under vis-
ible light irradiation (A =420 nm) using the CdS-decorated
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TiO, NRAs as a photocatalyst. In Fig. 6a, with the exten-
sion of the visible light irradiation time, one can see that
the degradation rates of UDMH by different photocatalysts
increased. Without the addition of any catalysts under
visible light irradiation for 180 min, the degradation rate of
UDMH was only 2.18%, which indicated that the degrad-
ation ability by simple visible light was very low, while the
bare TiO, NRAs could achieve 7.86% under the same con-
dition. Enhancement could be observed by using the CdS-
decorated TiO, NRAs as the photocatalyst. For example,
the degradation rate was 19.56% by TiO, NRAs/CdS (5 cy-
cles), and it could reach 36.77% if using TiO, NRAs/CdS
(15 cycles). However, continually increasing the SILAR cy-
cles to 20, the degradation rate decreased (i.e., it was down
to 27.95%) instead of getting higher. It can be seen that the
degradation rate of UDMH first increased with the increase
of the CdS deposition cycles and then decreased when the
CdS deposition cycles continually increased. Thus, we may
deduce that when a proper amount of CdS NPs are deco-
rated, more visible light could be absorbed to produce more
excited carriers and the carriers could be separated more
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efficiently, which lead to higher degradation rates. However,
excess deposition of CdS NPs in the TiO, NRAs/CdS
(20 cycles) sample causes a longer transport path for the
photogenerated electron—hole pairs [15, 35], and it is a po-
tential barrier for charge carrier transfer. This is not benefi-
cial for the effective separation of carriers, therefore leading
to the decrease of the photodegradation rate. A proper
amount of CdS decoration is the key factor that decides the
photodegradation efficiency.

The influence of pH on the degradation rate of
UDMH was also studied, and pH of the simulated
UDMH solution was adjusted to 3, 5, 9, and 11 by
NaOH and H,SO,. In this experiment, TiO, NRAs
decorated with CdS NPs by 15 SILAR cycles were
chosen as the catalyst. It was discovered that the best
degradation rate of UDMH could be achieved in the
neutral solution (pH is c.a. 7.2). The photocatalytic deg-
radation rate of UDMH under alkaline circumstance is
better than that under acid circumstance.

Durability is another important point of CdS-related
photocatalyst because CdS may cause photocorrosion
under irradiation. The visible photocatalytic durability
of the TiO, NRAs/CdS (15 cycles) sample was inves-
tigated and displayed in Fig. 6¢c. The photodegradation
ratio of UDMH after each 180-min irradiation for
3 cycles was about 36.77, 31.69, and 22.63%, respect-
ively. Photocorrosion effect led to more than 35%
decrease of the degradation rate after three runs. It
means that part of Cd** was left in the aqueous
solution which could result in the second pollution,
the most pressing problem about CdS-related photo-
activity. However, for the excellent photoconversion
of CdS, it still attracts intensive studies by lots of
researchers. In our previous experiment [36],
NiFe,O4-modified TiO, NRAs were used in the
photodegradation of UDMH wastewater under the
same condition; however, the degrading rate (c.a.
22.06%) was relatively low compared with that of

CdS-modified TiO, NRAs. In this case, we would be
committed to improve the durability of TiO, NRAs/CdS
in the future.

A proposed model for the photodegradation activity
can be illustrated as follows. When TiO, NRAs/CdS
is irradiated by visible light (1 >420 nm), CdS could
be effectively excited to produce electron and hole
pairs. As the conduction band (CB) of TiO, is more
positive than that of CdS, the excited electrons immi-
grate from the CB of CdS to the CB of TiO,. Thus,
the photoinduced charge carriers can be effectively
separated, and the lifetime is prolonged. The accumu-
lated electrons (e”) in the CB of TiO, could react
with dissolved oxygen molecules to form superoxide
radical anions (-Oy-) [37], which could be further
reduced to highly reactive hydroxyl radicals (-OH)
[38]. The positive holes in the valence band (VB) of
CdS can also be trapped by OH™ to produce -OH
species [39]. These strong oxidizing free radicals then
react with UDMH. Under acid circumstance, abun-
dant H" existing in the resolution may hinder process
(3), while under alkaline circumstance, OH™ existing
in the resolution may be in favor of process (4); this
may account for the effect of the pH on the degrad-
ing rate.

CdS + hv(visible) — CdS(e™ + hw ") (1)

CdS(ee™ + ") + TiOy — CdS(hw ") + TiOs(ews™) (2)

b +H,O— -OH + HT (3)
hp" +HO™ — -OH (4)
TiOz(ecb_) + 02 — T102 + ~02_ (5)

-OH + UDMH — degradation products

(6)
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Oy~ + UDMH — degradation products or O, + H* - HO,.- —» —-OH

To better understand the photocatalytic performance
of the TiO, NRAs/CdS, photocurrent intensity versus
potential (/-V) and PL measurements were carried out.

Figure 7a shows the I-V curves measured for TiO,
NRAs/CdS. Under visible light irradiation, the bare TiO,
NRAs electrode showed little photocurrent density.
After the deposition of CdS, the photocurrent density of
the samples increased remarkably. A higher photocurrent
density indicates a higher efficiency in the separation of
electrons and holes [40], thus suggesting a better photo-
catalytic performance. In Fig. 7a, the photocurrent density
first increased with the increase of the CdS NPs deposited
from 5 to 15 cycles. However, when the deposition of CdS
reached to 20 cycles, the photocurrent density was signifi-
cantly decreased rather than continuing to increase.
Though more CdS NPs brought the increased harvesting
of photons, it did not lead to the continual increase of the
photocurrent density. Two points may account for this
phenomenon. Firstly, excess CdS deposition made the
CdS crystallites larger, which increased the transfer path
for the photogenerated carriers [15, 35] and thus hindered
the fast transport of the carriers. Secondly, when the
SILAR deposition increased to 20 cycles, the abrupt in-
crease of CdS nanoparticles would create more defects,
which could act as recombination centers [29]. The two
points both result in the ineffective separation of the car-
riers. In addition, Fig. 7a also shows that the open circuit
potential (V,) for TiO, NRAs become more negative after
decorated with CdS (-0.26 V for the bare TiO, NRAs,
-1.13, -1.17, -1.23, and -1.21 V for TiO, NRAs decorated
by 5, 10, 15, and 20 cycles, respectively). It is reported that
more negative V. means better charge carrier separation
[41, 42], thus leading to better photocatalytic capacity.

The PL technique is an effective way to explore the sep-
aration of the charge carriers [29]. Figure 7b demonstrates
the PL spectra of the CdS-decorated TiO, NRAs, which
are excited at a wavelength of 350 nm. The peak in the PL
spectra originates from the recombination of the
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(7)

photogenerated electron—hole pairs [29, 43]. The higher
the PL intensity is, the higher the recombination rate of
the carriers is [43, 44]. It is clear to see that a broad emis-
sion peak centered at around 450 nm was observed for all
the samples. With the SILAR cycles increased to 15 cycles,
the intensity of the emission peak is quenched drastically.
This indicates that the introduction of CdS brings more
effective separation of the photoinduced electron—hole
carrier pairs, the prolonged lifetime of the carriers, and
thereby the less recombination rate of the photogenerated
electron and holes in the TiO,/CdS nanocomposite [45].
However, continually increasing the SILAR to 20 cy-
cles, there would be an abrupt increase of CdS nano-
particles to form defects. These defects could act as
recombination centers for the photoinduced carriers
[29, 46], thus initiating the rapid photoelectron—hole
recombination within CdS [47] and therefore causing
a stronger PL intensity.

From the I-V curves and PL spectra, it can be seen
that a proper amount of CdS decoration makes more
effective charge carrier separation, which will then
play an important role in the following photocatalytic
degrading activity.

Conclusions

The CdS NP-decorated TiO, NRAs were synthesized
and applied for the photodegradation of UDMH under
visible light irradiation. Compared with the bare TiO,
NRAs, TiO, NRAs/CdS heterojunction exhibited en-
hanced photocatalytic capacity toward UDMH. By
adjusting the cycles of SILAR, TiO, NRAs decorated by
15 cycles of CdS got the best degradation efficiency of
UDMH. Besides, it seems that alkaline circumstance is
more beneficial for the photocatalytic degradation of
UDMH than acid circumstance. When the pH of the
simulated UDMH wastewater was about 7.2, the deg-
radation rate of UDMH was highest. Through I-V
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and PL characterization, the proposed photocatalytic
mechanism was further confirmed. The synergetic
effect between CdS and TiO, leads to high electron
injection efficiency and fast electron transfer; thus,
the photocatalytic capacity of TiO, NRAs/CdS can be
enhanced significantly. This research proved that
photocatalysis may be a possible way to deal with the
toxic UDMH wastewater with low energy consump-
tion and easy recycle of the catalyst.

Additional files

Additional file 1: Figure S1. EDS images of TiO, NRAs/CdS. (a) 5 cycles,
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Additional file 2: Figure S2. TEM image of TiO, NRAs/CdS (15 cycles).
(964 KB)
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